Large Scale Distributed Deep Learning on Supercomputers

OLNR 5

Norwegian research infrastructure services

Hicham Agueny, PhD Scientific Computing Group Info.Tech. department, UiB/NRIS

Why distributed training ?

- Memory limitations presents a challenge when large models (or datasets) exceed a single GPU memory capacity
- Constraints of single GPU memory restrict smaller batch sizes affecting both performance and convergence
- Training deep learning models on massive datasets remains a challenge and necessitates the utilization of distributed training frameworks optimized for large High-Performance Computing (HPC) systems.

Motivation

Perspective Published: 08 December 2023

Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR

to screen 40 billion molecules (combining ZINC15 and Enamine REAL Space databases) against SARS-CoV-2 M^{pro} (ref. 95). The consecutive deep docking runs with the five programmes took approximately 90 days of computing on 250 GPUs and 640 CPU cores and reduced the

with GPUs, and the resulting GPU-AutoDock method was used on the 27,000 GPUs of the Summit supercomputer to process the Enamine REAL library against SARS-CoV-2 M^{pro} in 1 day¹¹⁰. In another large-scale

37,000,000,000

Year

Survey: Hardware architectures for Machine Learning

Out of the 252 reviewed papers, 159 papers present empirical results and provide details about their hardware setup.

(a) Hardware Architectures

(b) Training with Single vs. Multiple Nodes

Tal Ben-Nun and Torsten Hoefler. 2019. ACM Comput. Surv. 52, 4, Article 65 (August 2019), 43 pages

Learning Outcomes

Get an overview of the architecture of compute nodes in LUMI-G system.

- > Understand conceptual difference between model parallelism and data parallelism.
- Understand conceptual difference between data parallelism in a centralised and a decentralised architecture in Deep Neural Network.
- Sain insight into the concept of Horovod for distributed deep learning.
- > Implement Horovod-TensorFlow through a small example.

Supercomputer LUMI

LUMI-G

- 2928 nodes
- 1 AMD EPYC 7A53 64-Core CPU
- 4 AMD MI250X GPUs
 - 2 Graphics Compute Dies (GCDs) per GPU
 - 128 GB HBM2e per GPU
- HPE Slingshot interconnect
- Each GPU node features four 200 Gbit/s network interconnect cards, i.e. has 800 Gbit/s injection bandwidth.
- 512 GB DDR4 memory

Taken from LUMI Hackathon Introduction 22/11/2023

Architecture of a LUMI-G Compute node

Architecture of a LUMI-G Compute node

Compute Complex Die (CCD): AMD EPYC Zen3 Trento Architecture

Compute Complex Dies Host cores & L2/L3 cache

- L1 cache 32 kB/core
- L2 cache 512 kB/core
- L3 cache 32 MB/8-cores

Infinity fabric CPU-GPU (36+36 GB/s) Cray-Slingshot-11 interconnect (25+25 GB/s)

Concept of Distributed DNN Training

Model Parallelism

Data Parallelism

Decentralized DNN

Centralized DNN

DNN Training on a <u>single worker</u>

Distributed DNN Training: <u>Parallelism Schemes</u>

Parallelism in DNN: Training large DNN models or large dataset on multiple Workers in a shared or distributed environment.

Model Parallelism

Data Parallelism

<u>Centralized</u> Distributed DNN Training:

- Parameter servers collect subgradiants, compute gradiant and update weights
- Each worker pulls weights from server computes subgradient and sends its value back to the server
- No direct communication between workers
- All workers directly communicate with servers
- Overhead communication when increasing

nbr of workers. The scaling is poor.

M. Li et al. (Baidu, Google) Scaling distributed machine learning with the parameter server, Proc. 11th USENIX Conf. Oper. Syst. Design Implement., 2014, pp. 583–598.

Decentralized Distributed DNN Training:

Overview of distributed DL frameworks

Framework	Parallelism	Communication	
DistBelief [18]	Model + Data	Asynchronous	
FireCaffe [21]	Data	Synchronous	
Horovod [5]	- Data	Synchronous	
MXNet [23]	Model + Data	Bounded Asynchronous	
Petuum [19]	Model + Data	Bounded Asynchronous	
TensorFlow [22]	model + Data	Bounded Asynchronous	
PyTorch-DDP [6]	Model + Data	Synchronous	
DeepSpeed [7]	Model + Data	Synchronous	

Bounded asynchronous is a hybrid of synchronous and asynchronous communication

Aach et al. "Large scale performance analysis of distributed deep learning frameworks for convolutional neural networks" Journal of Big Data 10:96 (2023)

Standard distributed TensorFlow

Scaling performance

<u>Alexander Sergeev</u>, <u>Mike Del Balso</u> https://arxiv.org/abs/1802.05799

Distributed DNN Training with Horovod

- Concept of Horovod
- Implementation of Horovod with TensorFlow
- Example of MNIST dataset training

Distributed DNN Training with Horovod

What is Horovod ?

- Horovod is an open Source library built for distributed training on multiple GPUs and across multiple nodes.
- Horovod is designed to integrate existing DL frameworks: TensorFlow, Keras, PyTorch, Apache MXNet.
- Horovod is built based on communication libraries e.g. MPI (Message Passing Interface), NCCL, Gloo.

Concept of Horovod:

Key points of Horovod:

- Decentralised data parallelism scheme
- Adjusting learning rate technique
 Facebook: <u>https://arxiv.org/abs/1706.02677</u> (2017)
- Optimal bandwith ring-allreduce https://www.sciencedirect.com/science/article/pii/S0743731508001767 (2009)
- Ring-allreduce algorithm Baidu: <u>https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/</u> (2017)

Concept of Horovod: Data parallelism

Concept of Horovod: <u>ring-allreduce algorithm</u>

Overlaping between communication (data transfer) and computation (backpropagation)

- P. Patarasuk & X. Yuan J. Parallel Distrib. Comput. 69, 117–124 (2009)
- A. Sergeev, M. Del Balso https://arxiv.org/abs/1802.05799 (2018)

Concept of Horovod: <u>ring-allreduce algorithm</u>

57 12

Horovod benchmarks

Implementation

Implemention of Horovod with TensorFlow

0- Import Horovod

import horovod.tensorflow as hvd

1- Initialize Horovod

hvd.init()

2- Assign each GPU to a single process (local rank)
gpus = tf.config.experimental.list_physical_devices('GPU')

for gpu **in** gpus:

tf.config.experimental.set_memory_growth(gpu, True)

if gpus:

tf.config.experimental.set_visible_devices(
 gpus[hvd.local_rank()], 'GPU')

3- Scale learning rate

learning_rate = learning_rate * hvd.size()

Effective batch size = **batch size x Nbr of devices** An increase in learning rate compensates the increased batch size.

4-Apply Horovod distributed optimizer to the original optimizer

hvd.DistributedGradientTape if using
tf.GradientTape

5-Broadcast initial variables from rank==0 to all processes

hvd.broadcast_variables

This after initializing models and optimizers.

6-Save checkpoints on rank==0

checkpoint.save() when hvd.rank() == 0

https://horovod.readthedocs.io/en/stable/tensorflow.html

Tutorial GitHub repo: \$ git clone https://github.com/HichamAgueny/DL-Horovod.git ば☆ ⊻ 🛯 github.com/HichamAgueny/DL-Horovod/tree/main Û ← \rightarrow C Q Type // to search \equiv HichamAgueny / DL-Horovod A \geq Issues រ៉ោ Pull requests Actions 🗄 Projects Security Insights 診 Settings <> Code Þ ピ main ⊸ DL-Horovod / Q Go to file

🛞 HichamAgueny Create check_hvd.py 🚥

Name	Last commit message
Jobs	include slurm script
examples	include .py files
	Initial commit
B README.md	Update README.md
C check_hvd.py	Create check_hvd.py

сł

README.md	
	Distributed Deep Learning with Horovod
	This course is part of the <u>NLDL2024</u> winter school at UiT - The Arctic University of Norway. It is about distributed deep learning with Horovod.

def train(learning_rate,batch_size,epochs):
 # Import tensorflow modules
 import tensorflow as tf
 from tensorflow import keras

Distributed with Horovod

def train_hvd(learning_rate,batch_size,epochs):
 # Import tensorflow modules
 import tensorflow as tf
 from tensorflow import keras
 import horovod.tensorflow.keras as hvd

Initialize Horovod
hvd.init()

Assign each GPU to each local rank
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:

tf.config.experimental.set_memory_growth(gpu, True) if gpus:

tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()],'GPU')

def train(learning_rate,batch_size,epochs):

.

Prepare dataset
Here the default is rank=0, size=1
(x_train, y_train), (x_test, y_test) = get_dataset()

Initialize DNN model
model = get_model()

Distributed with Horovod

def train_hvd(learning_rate,batch_size,epochs):

•••••

...

Initialize DNN model
model = get_model()

Use the Horovod Distributed Optimizer
optimizer = hvd.DistributedOptimizer(optimizer)

def train(learning_rate,batch_size,epochs):

••••

Distributed with Horovod

def train_hvd(learning_rate,batch_size,epochs):

- •••
- ••••

Create a callback to broadcast callbacks = [#Broadcast the initial variable from rank 0 to all ranks. hvd.callbacks.BroadcastGlobalVariablesCallback(0), #Average metrics at the end of every epoch. hvd.callbacks.MetricAverageCallback(), #Scale the learning rate `lr = lr * hvd.size()`. #warmup_epochs could be adjusted. hvd.callbacks.LearningRateWarmupCallback(lr=1e-3*hvd.size(), warmup_epochs=3, verbose=1).

Train the model model.fit(x_train, y_train, batch_size=batch_size, callbacks=callbacks, epochs=epochs, verbose=2, validation_data=(x_test, y_test))

Distributed with Horovod

def train_hvd(learning_rate,batch_size,epochs):

...

Train the model model.fit(x_train, y_train, batch_size=batch_size, callbacks=callbacks, epochs=epochs, verbose=2, validation_data=(x_test, y_test))

▲ DistributedGradientTape_Allreduce/ cond_16/then/_128/DistributedGra							
Thread 3	NEGOTIATE_ALLREDUCE	WAIT	FOR OTHER TENSOR DATA	ALLREDUCE	NCCL	ALLREDUCE	
 DistributedGradientTape_Allreduce/ cond_29/then/_232/DistributedGra 							
Thread 6	NEGOTIATE_ALLREDUCE	WAIT FOR DATA	WAIT FOR OTHER TENS		NCCL	ALLREDUCE	
 DistributedGradientTape_Allreduce/ cond_30/then/_240/DistributedGra 							
Thread 5	NEGOTIATE_ALLREDUCE	WAIT FOR DATA	WAIT FOR OTHER TENSO	ALLREDUCE	NCCI		
▲ DistributedGradientTape_Allreduce/ cond_31/then/_248/DistributedGra							
Thread 2	NEGOTIATE_ALLREDUCE	WAIT		ALLREDUCE	NCCI		
▲ DistributedGradientTape_Allreduce/ cond_1/then/_8/DistributedGradien					NOUL_		
Thread 30							
 DistributedGradientTape_Allreduce/ cond_10/then/_80/DistributedGradi 							
Thread 16	NEGOTIATE_ALLREDUCE			ALLREDUCE			

 DistributedGradientTape_Allreduce/ cond_16/then/_128/DistributedGra 					
Thread 3		WAIT_FOR_OTHER_TENSOR_DATA	ALLREDUCE		NCCL_ALLREDUCE
 DistributedGradientTape_Allreduce/ cond_29/then/_232/DistributedGra 					
Thread 6			ALLREDUCE		
Thead 0	WAIT_FOR_DATA	WAIT_FOR_OTHER_TENSO	R_DATA		NCCL_ALLREDUCE
 DistributedGradientTape_Allreduce/ cond_30/then/_240/DistributedGra 					
Throad 5	ALLREDUCE				
Thead 5	WAIT_FOR_DATA	WAIT_FOR_OTHER_TENSOR_	DATA		NCCL_ALLREDUCE
 DistributedGradientTape_Allreduce/ cond_31/then/_248/DistributedGra 					
Thread 2			ALLREDUCE		
		WAIT_FOR_OTHER_TENSOR_DATA			NCCL_ALLREDUCE
 DistributedGradientTape_Allreduce/ cond_1/then/_8/DistributedGradien 					
Thread 30					
 DistributedGradientTape_Allreduce/ cond_10/then/_80/DistributedGradi 					
Throad 16			ALLREDUCE		
ilicau IU		WAIT_FOR_DATA	WAIT_FOR_O		NCCL_ALLREDUCE

 ✓ DistributedGradientTape_Allreduce/ cond_16/then/_128/DistributedGra 							
	ALLREDUCE						
nread 3	QUEUE		MEMCPY_IN_FUSION_BUFFER	R			
▲ DistributedGradientTape_Allreduce/ cond_29/then/_232/DistributedGra							
Ibroad 6		ALLREDUCE					
	QUEUE		MEMCPY_IN_F	USION_BUFFER			
▲ DistributedGradientTape_Allreduce/ cond_30/then/_240/DistributedGra							
[broad 5			ALLREDUCE				
	QUEUE		MEMCPY_IN_FUSION_BU	JFFER			
▲ DistributedGradientTape_Allreduce/ cond_31/then/_248/DistributedGra							
[broad 2			ALLREDUCE				
	QUEUE		MEMCPY_IN_FUSION_BUFFER	R			
 DistributedGradientTape_Allreduce/ cond_1/then/_8/DistributedGradien 							
Thread 30							
 DistributedGradientTape_Allreduce/ cond_10/then/_80/DistributedGradi 							
[broad 16			ALLREDUCE				
nrean Ih							

GPU-Binding (Efficient data transfer)

[hiagueny@uan	01:~> <mark>salloc -A</mark>	oroject_465000485 -t 00:05:00 -p standard-g -N 1gpus 8			
salloc: Pending job allocation 3636016					
salloc: job	3636016 queued ar	nd waiting for resources			
salloc: job	3636016 has been	allocated resources			
salloc: Gran	ted job allocatio	on 3636016			
[hiagueny@uan	01:~> srun rocm-s	smishowtoponuma			
	D 00				
===========	======= ROCm	System Management Interface ====================================			
	======================================	====== Numa Nodes ====================================			
	: (Topology)	Numa Node: 3			
	: (Topology)	Numa Allinity: 3			
	(Topology)	Numa Noue. 5 Numa Affinity: 2			
	· (Topology)	Numa Arrinity. 5 Numa Noda: 1			
	· (Topology)	Numa Noue. I Numa Affinity: 1			
	· (Topology)	Numa Node: 1			
	· (Topology)	Numa Affinity: 1			
	· (Topology)	Numa Node: 0			
	· (Topology)	Numa Affinity: 0			
GPU[5]	: (Topology)	Numa Node: 0			
GPU[5]	: (Topology)	Numa Affinity: 0			
GPU[6]	: (Topology)	Numa Node: 2			
GPU[6]	: (Topology)	Numa Affinity: 2			
GPU[7]	: (Topology)	Numa Node: 2			
GPU[7]	: (Topology)	Numa Affinity: 2			
===========	=======================================	= End of ROCm SMI Log ===================================			
[hiagueny@uan	01:~> srun lscpu	grep NUMA			
NUMA node(s)	:	4			
NUMA node0 C	PU(s):	0-15,64-79			
NUMA node1 C	PU(s):	16-31,80-95			
NUMA node2 C	PU(s):	32-47,96-111			
NUMA node3 C	PU(s):	48-63,112-127			

Binding option: CPU-GPU affinity

<pre>[hiagueny@uan01:~> salloo salloc: Pending job allo salloc: job 3636016 queu salloc: job 3636016 has salloc: Granted job allo [hiagueny@uan01:~> srun</pre>	c -A project_465000485 -t ocation 3636016 ued and waiting for resour been allocated resources ocation 3636016 rocm-smishowtoponuma	00:05:00 -p stand ces	ard-g -N 1gpus 8
			#!/bin/bash
	ROCm System Management In	terface ========	••••
GPU[0] : (Topo' GPU[0] : (Topo' GPU[1] : (Topo' GPU[1] : (Topo' GPU[1] : (Topo'	======================================	NUMA node 3	#SBATCHgpus=8 #SBATCHexclusive sruncpu-bind=map_cpu: 49,57, 17,25, 1,9, 33,41 \
GPU[2] : (Topo GPU[2] : (Topo GPU[3] : (Topo GPU[3] : (Topo GPU[4] : (Topo	logy) Numa Node: 1 logy) Numa Affinity: 1 logy) Numa Node: 1 logy) Numa Affinity: 1 logy) Numa Node: 0	NUMA node 1	Or
GPU[4] : (Topo GPU[5] : (Topo GPU[5] : (Topo GPU[6] : (Topo	logy) Numa Affinity: 0 logy) Numa Node: 0 logy) Numa Affinity: 0 logy) Numa Node: 2	NUMA node 0	MASK="0x\${fe}000000000000,0x\${fe}000000000000000000000000000000000000
GPU[6] : (Topo' GPU[7] : (Topo' GPU[7] : (Topo'	logy) Numa Affinity: 2 logy) Numa Node: 2 logy) Numa Affinity: 2	NUMA node 2	0x\${fe}0000000,0x\${fe}00000000"
<pre>[hiagueny@uan01:~> srun NUMA node(s): NUMA node0 CPU(s):</pre>	<u>====== End of ROCM SMI Log</u> lscpu grep NUMA 4 0-15,64-7 <u>9</u>	,	sruncpu-bind=mask_cpu:\$MYMASKS \ ./application
NUMA node1 CPU(s): NUMA node2 CPU(s): NUMA node3 CPU(s):	16-31,80-95 32-47,96-111 48-63,112-127		See here for more details https://github.com/HichamAgueny/DL-Horovod/tree/main/Jobs

Conclusion

- Overview of the compute nodes architecture in LUMI-G.
- Model parallelism vs data parallelism
- Centralized vs decentralized distributed training strategy
- Horovod for distributed training
 - Simple to implement
 - Suitable for large scale distributed training
 - Works with multiple ML frameworks
 - Ring allreduce algorithm
- Horovod timeline profiling

GitHub Repo

