
Hicham Agueny, PhD
Scientific Computing Group
Info.Tech. department, UiB/NRIS

Large Scale Distributed Deep
Learning on Supercomputers

• Memory limitations presents a challenge when large models (or
datasets) exceed a single GPU memory capacity

• Constraints of single GPU memory restrict smaller batch sizes affecting
both performance and convergence

• Training deep learning models on massive datasets remains a
challenge and necessitates the utilization of distributed training
frameworks optimized for large High-Performance Computing (HPC)
systems.

Why distributed training ?

Nature Reviews Drug Discovery

Perspective

tested (reviewed in ref. 25). However, progress in medicinal chemis-
try requires the discovery of new chemical entities. Generating new
molecules from scratch (de novo) involves construction, scoring and
optimization26 of molecular structures and advances in these tasks
have recently been achieved using deep QSAR coupled with generative
chemistry27.

Methods employed for de novo molecular design include
rule-based and rule-free approaches28,29, both of which have been shown
to identify new bioactive compounds that are also synthetically acces-
sible (see ref. 30 for a review). Rule-based methods use sets of molecular
building blocks and chemical transformations such as virtual reaction
schemes for structure generation31. In contrast, rule-free ‘generative’
(or ‘constructive’) deep learning methods32 sample new molecules from
a learned statistical distribution of the training data (‘latent space’),
without explicitly representing their molecular structure in chemical
terms, and this molecular design process is difficult (if not impossible)
to describe in a way that can be easily interpreted.

Many generative drug design approaches have been built on deep
neural networks (Fig. 2a–d). The most prominent methods are chemical
language models33 that employ textual representation of molecules by
SMILES strings to learn the intrinsic grammar of the strings and generate
new strings corresponding to novel realistic molecules. The majority of

the chemical language models reported in the literature have employed
recurrent neural networks with long short-term memory34, variational
autoencoders35 and generative adversarial networks36, and graph neural
networks37 have also been used to learn and generate molecular graphs.
Several other deep learning architectures have been proposed for
this purpose, including hybrid approaches combining rule-based and
rule-free networks38. A recent review provides a good summary of neural
network architectures used in generative chemical language models39.

All of the methods considered above typically sample new mol-
ecules from a latent representation of molecular structure learned by
the neural network during model training; that is, they act as statisti-
cal structure generators. At some point during or after the molecule
construction process, the proposed designs are evaluated and pri-
oritized according to the desired function; that is, their biological
activity and/or other properties. Notably, it has also recently been
demonstrated that the inverse strategy — generating molecules with
desired properties that are decoded from a particular area of the latent
descriptor space — can be successfully pursued using a type of deep
learning method called a conditional recurrent neural network40.

Virtual assessment of the target property of the generated mol-
ecules is the most critical and error-prone part of the design process.
Scoring of new molecules can be performed in several ways (Fig. 2e,f).

Box 2

Expansion of searchable chemical space
Advances in click chemistry, robotics, synthesis automation and
computational planning have led to exponential growth in the sizes
of chemical databases in recent years.

One of the most popular databases for sourcing molecules for
virtual screening is ZINC. In 2006, this database contained less than
a million molecules, but the most recent ZINC22 version has grown
to over 37 billion unique chemical entries — a >50,000-fold increase,
with the most dramatic growth in the last 2 years (see figure)152.

Commercial libraries such as WuXi AppTec or CHEMriya by
OTAVA have also grown rapidly. The commonly used Enamine REAL
database currently offers up to 5.5 billion unique compounds for
order, while the Enamine REAL Space on-demand library can be
expanded into ~38 billion entities (when isomers are considered).
Similarly, the SAVI database encompasses 1.75 billion chemicals
that have been generated by applying 53 chemical transformations
to 150,000 Enamine building blocks64. There is also a growing
number of knowledge-based collections, including BioSolveIT
KnowledgeSpace, which describes the chemical space of hundreds
of billions of structures with a plausible synthetic feasibility.

Recently, a comprehensive collection of 4.2 billion molecules
has been aggregated from 23 different sources in an effort to find
direct antivirals against SARS-CoV-2 (ref. 153). Many (if not all)
pharmaceutical companies have created their own proprietary
ultra-large chemical databases, for example, PLC by Eli Lilly, PGVL
by Pfizer and XXL collections by GlaxoSmithKline154.

Further expansion of accessible chemical space could be
already projected into trillions of entities. Ruddigkeit et al. generated
166.4 billion virtual molecules containing up to 17 atoms restricted

to basic chemical elements (C, N, O, S and halogens) that could be
made by following simple synthetic rules155. Other virtual databases
such as eXplore from eMolecules and MolDB from DeepCure already
include trillions of hypothetical entries, with the latter collection
already aiming at expanding to 1018 synthesizable compounds
constructed by generative models.

37,000,000,000

1,400,000,000

220,000,000

3,400,000
727,842

2004 2012 2015 2020 2022

Nu
m

be
r o

f m
ole

cu
les

 in
 th

e Z
IN

C
da

tab
as

e

Year

Exponential growth in the size
of chemical databases

Motivation

65:6 T. Ben-Nun and T. Hoefler

Fig. 3. Parallel architectures in deep learning.

called an epoch, and a full training procedure usually consists of tens to hundreds of such epochs
[84, 260]. As opposed to the original SGD, shuffle-based processing entails without-replacement
sampling. Nevertheless, minibatch SGD was proven [221] to provide similar convergence
guarantees.

2.2 Parallel Computer Architecture
We continue with a brief overview of parallel hardware architectures that are used to execute
learning problems in practice. They can be roughly classified into single-machine (often shared
memory) and multi-machine (often distributed memory) systems.

2.2.1 Single-machine Parallelism. Parallelism is ubiquitous in today’s computer architectures,
internally on the chip in the form of pipelining and out-of-order execution, as well as exposed
to the programmer in the form of multi-core or multi-socket systems. Multi-core systems have a
long tradition and can be programmed with either multiple processes (different memory domains),
multiple threads (shared memory domains), or a mix of both. The main difference is that multi-
process parallel programming forces the programmer to consider the distribution of the data as
a first-class concern while multi-threaded programming allows the programmer to only reason
about the parallelism, leaving the data shuffling to the hardware system (often through hardware
cache-coherence protocols).

Out of the 252 reviewed papers, 159 papers present empirical results and provide details about
their hardware setup. Figure 3(a) shows a summary of the machine architectures used in research
papers over the years. We see a clear trend toward GPUs, which dominate the publications be-
ginning from 2013. However, even accelerated nodes are not sufficient for the large computa-
tional workload. Figure 3(b) illustrates the quickly growing multi-node parallelism in those works.
This shows that, beginning from 2015, distributed-memory architectures with accelerators such
as GPUs have become the default option for machine learning at all scales today.

2.2.2 Multi-machine Parallelism. Training large-scale models is a very compute-intensive task.
Thus, single machines are often not capable to finish this task in a desired time-frame. To accelerate
the computation further, it can be distributed across multiple machines connected by a network.
The most important metrics for the interconnection network (short: interconnect) are latency,
bandwidth, and message-rate. Different network technologies provide different performance. For
example, both modern Ethernet and InfiniBand provide high bandwidth but InfiniBand has signif-
icantly lower latencies and higher message rates. Special-purpose HPC interconnection networks
can achieve higher performance in all three metrics. Yet, network communication remains gener-
ally slower than intra-machine communication.

ACM Computing Surveys, Vol. 52, No. 4, Article 65. Publication date: August 2019.

65:6 T. Ben-Nun and T. Hoefler

Fig. 3. Parallel architectures in deep learning.

called an epoch, and a full training procedure usually consists of tens to hundreds of such epochs
[84, 260]. As opposed to the original SGD, shuffle-based processing entails without-replacement
sampling. Nevertheless, minibatch SGD was proven [221] to provide similar convergence
guarantees.

2.2 Parallel Computer Architecture
We continue with a brief overview of parallel hardware architectures that are used to execute
learning problems in practice. They can be roughly classified into single-machine (often shared
memory) and multi-machine (often distributed memory) systems.

2.2.1 Single-machine Parallelism. Parallelism is ubiquitous in today’s computer architectures,
internally on the chip in the form of pipelining and out-of-order execution, as well as exposed
to the programmer in the form of multi-core or multi-socket systems. Multi-core systems have a
long tradition and can be programmed with either multiple processes (different memory domains),
multiple threads (shared memory domains), or a mix of both. The main difference is that multi-
process parallel programming forces the programmer to consider the distribution of the data as
a first-class concern while multi-threaded programming allows the programmer to only reason
about the parallelism, leaving the data shuffling to the hardware system (often through hardware
cache-coherence protocols).

Out of the 252 reviewed papers, 159 papers present empirical results and provide details about
their hardware setup. Figure 3(a) shows a summary of the machine architectures used in research
papers over the years. We see a clear trend toward GPUs, which dominate the publications be-
ginning from 2013. However, even accelerated nodes are not sufficient for the large computa-
tional workload. Figure 3(b) illustrates the quickly growing multi-node parallelism in those works.
This shows that, beginning from 2015, distributed-memory architectures with accelerators such
as GPUs have become the default option for machine learning at all scales today.

2.2.2 Multi-machine Parallelism. Training large-scale models is a very compute-intensive task.
Thus, single machines are often not capable to finish this task in a desired time-frame. To accelerate
the computation further, it can be distributed across multiple machines connected by a network.
The most important metrics for the interconnection network (short: interconnect) are latency,
bandwidth, and message-rate. Different network technologies provide different performance. For
example, both modern Ethernet and InfiniBand provide high bandwidth but InfiniBand has signif-
icantly lower latencies and higher message rates. Special-purpose HPC interconnection networks
can achieve higher performance in all three metrics. Yet, network communication remains gener-
ally slower than intra-machine communication.

ACM Computing Surveys, Vol. 52, No. 4, Article 65. Publication date: August 2019.

Survey: Hardware architectures for Machine Learning

Out of the 252 reviewed papers, 159 papers present empirical results and provide details about their hardware setup.

Tal Ben-Nun and Torsten Hoefler. 2019. ACM Comput. Surv. 52, 4, Article 65 (August 2019), 43 pages

Learning Outcomes

Ø Get an overview of the architecture of compute nodes in LUMI-G system.

Ø Understand conceptual difference between model parallelism and data parallelism.

Ø Understand conceptual difference between data parallelism in a centralised and

 a decentralised architecture in Deep Neural Network.

Ø Gain insight into the concept of Horovod for distributed deep learning.

Ø Implement Horovod-TensorFlow through a small example.

LUMI-G
• 2928 nodes (it was 2560)
• 1 AMD EPYC 7A53 64-Core

CPU
• 4 AMD MI250X GPUs

• 2 Graphics Compute Dies
(GCDs) per GPU

• 128 GB HBM2e per GPU
• HPE Slingshot interconnect

• Each GPU node features four
200 Gbit/s network
interconnect cards, i.e. has
800 Gbit/s injection
bandwidth.

• 512 GB DDR4 memory

© 2023 Hewlett Packard Enterprise Development LP 5

LUMI System (after August 2023 upgrade)

Image © CSC, Finland

LUMI-G

• 2928 nodes

• 1 AMD EPYC 7A53 64-Core CPU

• 4 AMD MI250X GPUs
• 2 Graphics Compute Dies
 (GCDs) per GPU
• 128 GB HBM2e per GPU

• HPE Slingshot interconnect

• Each GPU node features four 200 Gbit/s
 network interconnect cards,
 i.e. has 800 Gbit/s injection bandwidth.

• 512 GB DDR4 memory

Supercomputer LUMI

Taken from LUMI Hackathon Introduction 22/11/2023

Architecture of a LUMI-G Compute node

Network Interface card (NIC)

NUMA 3
NUMA 1

NUMA 2

NUMA 0

GCD (o
r GPU)

Cray-Slingshot-11 interconnect
(25+25 GB/s)

Infinity fabric GPU-GPU (50+50 GB/s)

Infinity fabric CPU-GPU (36+36 GB/s)

https://docs.lumi-supercomputer.eu/hardware/lumig/

Network Interface card (NIC)

NUMA 3
NUMA 1

NUMA 2

NUMA 0

GCD (o
r GPU)

Cray-Slingshot-11 interconnect
(25+25 GB/s)

Infinity fabric GPU-GPU (50+50 GB/s)

Infinity fabric CPU-GPU (36+36 GB/s)

https://docs.lumi-supercomputer.eu/hardware/lumig/

CCD

Architecture of a LUMI-G Compute node

Compute Complex Die

GCD (o
r GPU)

Cray-Slingshot-11 interconnect

(25+25 GB/s)

Infinity fabric CPU-GPU (36+36 GB/s)

AMD EPYC Zen3 Trento Architecture

CCD
8 cores

CCD
8 cores

CCD
8 cores

CCD
8 cores

Memory/IO
Die

2x
DDR

2x
DDR

2x
DDR

2x
DDR

CCD
8 cores

CCD
8 cores

CCD
8 cores

CCD
8 cores

NUMA node 0

Socket 0

6

Compute Complex Die (CCD) 32MB
L3

Zen3
Core

Zen3
Core

512k
L2

512k
L2

Zen3
Core

Zen3
Core

512k
L2

512k
L2

Compute Complex Die (CCD)

Zen3
Core

Zen3
Core

512k
L2

512k
L2

Zen3
Core

Zen3
Core

512k
L2

512k
L2

Compute Complex Dies (CCDs)
• host cores and L2/L3 cache

• L1 cache 32kB / core

• L2 cache 512kB / core

• L3 cache 32MB / 8-cores

AMD EPYC 7A53
Base clock 2.00 GHz
64 cores, 128 hardware threads

• 8 CCDs of 8 cores
256MB L3 cache in total
8 channel DDR4 3200MHz, 204.8 GB/s
peak b/w
Configured as 4 NUMA nodes
1 Socket
Vector support: AVX2

© 2023 HEWLETT PACKARD ENTERPRISE DEVELOPMENT LP

NUMA node 1

NUMA node 3 NUMA node 2

Compute Complex Dies
Host cores & L2/L3 cache
• L1 cache 32 kB/core
• L2 cache 512 kB/core
• L3 cache 32 MB/8-cores

Taken from LUMI Hackathon Introduction 22/11/2023

Compute Complex Die (CCD): AMD EPYC Zen3 Trento Architecture

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

Concept of Distributed DNN Training

• Model Parallelism

• Data Parallelism

Centralized DNN

Decentralized DNN

DNN Training on a single worker

DATA

Worker 0

Distributed DNN Training: Parallelism Schemes

Model Parallelism
Data Parallelism

DATA

Worker 0 Worker 1 Worker n

….

DATA

Worker 2 Worker 1

Worker 0

Worker n

Simplicity
&

Scalability
&

Runtime Performance

Parallelism in DNN: Training large DNN models or large dataset on multiple Workers in a shared or distributed environment.

To motivate the design decisions in our system, next
we briefly outline the two widely used machine learning
technologies that we will use to demonstrate the efficacy
of our parameter server. More detailed overviews can be
found in [36, 28, 42, 22, 6].

2.2 Risk Minimization

The most intuitive variant of machine learning problems
is that of risk minimization. The “risk” is, roughly, a mea-
sure of prediction error. For example, if we were to predict
tomorrow’s stock price, the risk might be the deviation be-
tween the prediction and the actual value of the stock.

The training data consists of n examples. xi is the ith
such example, and is often a vector of length d. As noted
earlier, both n and d may be on the order of billions to tril-
lions of examples and dimensions, respectively. In many
cases, each training example xi is associated with a label
yi. In ad click prediction, for example, yi might be 1 for
“clicked” or -1 for “not clicked”.

Risk minimization learns a model that can predict the
value y of a future example x. The model consists of pa-
rameters w. In the simplest example, the model param-
eters might be the “clickiness” of each feature in an ad
impression. To predict whether a new impression would
be clicked, the system might simply sum its “clickiness”
based upon the features present in the impression, namely
x>w :=

P
d

j=1 xjwj , and then decide based on the sign.
In any learning algorithm, there is an important re-

lationship between the amount of training data and the
model size. A more detailed model typically improves
accuracy, but only up to a point: If there is too little train-
ing data, a highly-detailed model will overfit and become
merely a system that uniquely memorizes every item in
the training set. On the other hand, a too-small model
will fail to capture interesting and relevant attributes of
the data that are important to making a correct decision.

Regularized risk minimization [48, 19] is a method to
find a model that balances model complexity and training
error. It does so by minimizing the sum of two terms:
a loss `(x, y, w) representing the prediction error on the
training data and a regularizer ⌦[w] penalizing the model
complexity. A good model is one with low error and low
complexity. Consequently we strive to minimize

F (w) =
nX

i=1

`(xi, yi, w) + ⌦(w). (1)

The specific loss and regularizer functions used are impor-
tant to the prediction performance of the machine learning
algorithm, but relatively unimportant for the purpose of

worker 1

�������������

�������������

��������������

��������������

g1 +... +gm

w

��������������
����������
��������������

servers
g1

w1

gm

wm

����������������
���������
���������

worker m

...2. push

training
data

4. pull

4. pull

2. push

3. update

1. compute

1. compute

Figure 2: Steps required in performing distributed subgra-
dient descent, as described e.g. in [46]. Each worker only
caches the working set of w rather than all parameters.

Algorithm 1 Distributed Subgradient Descent
Task Scheduler:

1: issue LoadData() to all workers
2: for iteration t = 0, . . . , T do

3: issue WORKERITERATE(t) to all workers.
4: end for

Worker r = 1, . . . ,m:

1: function LOADDATA()
2: load a part of training data {yik , xik}

nr
k=1

3: pull the working set w(0)
r from servers

4: end function

5: function WORKERITERATE(t)
6: gradient g(t)r

P
nr

k=1 @`(xik , yik , w
(t)
r)

7: push g(t)r to servers
8: pull w(t+1)

r from servers
9: end function

Servers:

1: function SERVERITERATE(t)
2: aggregate g(t)

P
m

r=1 g
(t)
r

3: w(t+1)
 w(t)

� ⌘
�
g(t) + @⌦(w(t)

�

4: end function

this paper: the algorithms we present can be used with all
of the most popular loss functions and regularizers.

In Section 5.1 we use a high-performance distributed
learning algorithm to evaluate the parameter server. For
the sake of simplicity we describe a much simpler model

4

M. Li et al. (Baidu, Google) Scaling distributed machine learning with the parameter server,
Proc. 11th USENIX Conf. Oper. Syst. Design Implement., 2014, pp. 583–598.

Centralized Distributed DNN Training:

DATA

• Parameter servers collect subgradiants,

 compute gradiant and

 update weights

• Each worker pulls weights from server

 computes subgradient and

 sends its value back to the server

• No direct communication between workers

• All workers directly communicate with servers

• Overhead communication when increasing

 nbr of workers. The scaling is poor.

Optimizer

• No parameter servers

• Each worker computes (sub)gradient

 and exchange its value with the neighbooring

 workers (forming a Ring)

• Each worker computes their own weights

• Each worker don’t exchange weights with

 other workers

Decentralized Distributed DNN Training:

Optimizer

Worker 0

Optimizer

Worker 1

Optimizer

Worker m

Exchange subgradient

Ex
ch

an
ge

 su
bg

ra
die

nt Exchange subgradient

In horizontal partitioning, the layers themselves are parti-
tioned. Hence, different parts of each training sample are
processed in parallel using multiple devices. Thereby, hori-
zontal partitioning often leads to a subset of neuron connec-
tions crossing partition boundaries. Efficiency hinges on
finding splits that minimize the number of signals that have
to transition machine boundaries. However, reorganizing
and dispatching the individual layer outputs, such that they
are consumable by each destination layer partition and
vice-versa is complex and requires the DDLS to have
detailed knowledge of the internal workings of the parti-
tioned layers, which makes implementing this type of
model partitioning across machine boundaries tedious in
practice. Usually, horizontal partitioning is considered as a
last resort if there is no other way to fit a layer into the mem-
ory of any single machine [9], or if the model contains large
distinct sections with limited connectivity (e. g., non-convo-
lutional locally receptive fields [18]).

Regardless of which partitioning strategy is used, the
slowest route through the model determines the time
required to perform inference and backpropagation.Whether
an actual model training task can benefit from mapping the
computation steps of the model onto the cluster hardware
using model partitioning is highly situational [17]. Partition-
ing a model, such that the overhead is minimal and there are
no bottlenecks, requires sophisticated algorithms in practice
[17], [19]. Particular properties of the cluster configuration
and any adjustment of the mini-batch size, model or compu-
tation graph (e. g., because it is data dependent) changes the
optimal layout. Therefore, recent years havewitnessed a shift
away frommodel and towards data parallelism.

Pipelining signals through the partitioned model can
help to better utilize the cluster hardware and increase the
overall data throughput. However, during training each
machine can only update its model parameters once all
downstream computation steps for a mini-batch have been
completed. Two possible ways to implement pipelining
during training are: 1) Splitting the input mini-batch fur-
ther, pipelining the fragments and accumulating the per-
parameter gradients for the entire mini-batch, which are
applied at the end. This does not solve the underlying prob-
lem, but, assuming the incurred overheads are low, results
in a higher average GPU utilization [20]. 2) If enough
resources are available to cache intermediate states for mul-
tiple mini-batches, pipelining entire mini-batches is also
possible. However, this method leads to gradients being
computed from stale parameters, a problem that is also
frequently witnessed in certain data-parallel systems
(cf. Section 3.3.3).

3.1.2 Data Parallelism (DP)

The basic idea underpinning data parallelism is to increase
the overall sample throughput rate by replicating the model
onto multiple machines, where backpropagation can be per-
formed in parallel, to gather more information about the
loss function faster. Conceptually, data parallelism is
accomplished as follows. First, each cluster node downloads
the current model. Then, each node performs backpropaga-
tion using its assignment of data in parallel. Finally, the
respective results are aggregated and integrated to form a
new model [21].

This is permissible because most transformations applied
to a specific training sample in deep neural networks do not
involve data from other samples.1 Thus, the sum of per-
parameter gradients computed using subsets (x0; . . . ; xn) of a
mini-batch (x) matches the per-parameter gradients for the

entire input batch (i. e., @Lðx;wÞ
@w u @Lðx0;wÞ

@w þ . . .þ @Lðxn;wÞ
@w).

Hence, assuming the mini-batch size is 64 samples in a clus-
ter with two identical machines, then eachmachinemay pro-
cess 32 samples in parallel without requiring cross-machine
communication. Typically, halving the number of training
samples also halves the number of computations and the
size of intermediate tensors, which speeds up backpropaga-
tion and is also helpful whenworkingwith largemodels.

Because either per-parameter gradients or the model
parameters have to be transferred between machines, the
relation of the model size and network bandwidth is key to
whether data parallelism can accelerate training. The smaller
a model is in comparison with its computational complexity,
the easier it becomes to implement data parallelism [15]. For
large models, bandwidth-related issues can quickly limit
scalability [11]. However, as we will show in further parts of
this taxonomy, data-parallel DDLS can apply various tricks
to reduce the impact of bandwidth limitations.

Conceptually, further scaling out data-parallel systems
just requires replicating the model code to another machine
and assigning it to different mini-batch of data. This is in
stark contrast to model-parallel approaches, where adding
or removing a machine typically requires reevaluating the
entire partitioning schema, which is significantly more chal-
lenging. Model parallelism remains relevant for in-node
scaling if the cluster nodes are equipped with multiple
GPUs [17], [19], [23]. With respect to the distributed domain,
most recently developed DDLS focus primarily (occasion-
ally solely; cf. [11], [24], [25], [26], [27]) on data parallelism.
Therefore, the remainder of our taxonomy is predominantly
focused on techniques used in data-parallel DDLS.

3.2 Centralized Versus Decentralized Optimization
In Fig. 2, we detail the data flow while training a deep learn-
ing model. The training procedure can be split into two dis-
tinct cycles. The blue process () computes per-parameter

Fig. 2. Distinct data flow cycles in deep learning models during training
(= gradient computation cycle; = model update / optimization cycle).

1. This is not true if e. g., batch normalization [22] is used. However,
if the individual mini-batch subsets are large enough, their statistics
should approximate those of the entire mini-batch. Due to the intended
normalization effect, minor variations of the statistics can even be desir-
able [8], which makes DP also applicable with such models.

2804 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 31, NO. 12, DECEMBER 2020

Authorized licensed use limited to: The University of Bergen. Downloaded on December 21,2023 at 14:39:09 UTC from IEEE Xplore. Restrictions apply.

M. Langer et al. IEEE TPDS 31:12, 2020

Overview of distributed DL frameworks

Page 6 of 23Aach et al. Journal of Big Data (2023) 10:96

relatively large BS values. Additionally, three different learning rate schedules are
explored and their performance in terms of V is analyzed.

Overview of the benchmark setup
This section gives an overview of the main frameworks used in this study, i.e., Horovod
is introduced in "Horovod" section, PyTorch in "PyTorch-distributed data parallel" sec-
tion, DeepSpeed in "DeepSpeed" section, and the data loaders in "Data loaders and data-
set compression" section. Furthermore, their communication operations are presented
and examples of how to include them into actual Python code are provided. General
issues that arise when scaling to a large amount of GPUs are addressed in "GPU scaling
issues" section and the different ResNet architectures are introduced in "Residual neural
networks" section. Three different learning rate scheduling methods with the potential
of increasing the accuracy of the training are introduced in "Learning rate scheduling"
section. The hardware and software configuration of the supercomputer used for the
benchmark tests is presented in "JUWELS HPC system and software stack" section.

Horovod
Horovod is an open-source distributed DL library originally developed by Uber for Ten-
sorFlow [5]. It is also supported as a backend library in the most common DL frame-
works such as PyTorch and Apache MXNet. Minimal code changes are required to
integrate Horovod into these DL frameworks. Code snippet 1 gives an example of how
to integrate Horovod with PyTorch.

The work by Pumma et al. [33] provides an overview and an analysis of the commu-
nication patterns in Horovod. It is one of the first libraries to use a decentralized Ring
AllReduce approach [34] to compute the gradient reduction instead of a single param-
eter server receiving all the updates, cf. "Introduction" section. It relies on low-level
communication libraries such as MPI, the NVIDIA Collective Communications Library
(NCCL) [35], or Facebook Gloo [36]. It is observed that the NCCL AllReduce yields
superior performance on NVIDIA GPUs [6].

Table 1 Overview of distributed DL frameworks, adapted from [6, 17]

Bounded asynchronous is a hybrid of synchronous and asynchronous communication

Framework Parallelism Communication

DistBelief [18] Model + Data Asynchronous

FireCaffe [21] Data Synchronous

Horovod [5] Model + Data Synchronous

MXNet [23] Model + Data Bounded Asynchronous

Petuum [19] Model + Data Bounded Asynchronous

TensorFlow [22] model + Data Bounded Asynchronous

PyTorch-DDP [6] Model + Data Synchronous

DeepSpeed [7] Model + Data Synchronous

Aach et al. “Large scale performance analysis of distributed deep learning frameworks for convolutional neural networks“ Journal of Big Data 10:96 (2023)

2 Going distributed

As we began training more and more machine learning models at Uber, their size and data consumption
grew significantly. In a large portion of cases, the models were still small enough to fit on one or
multiple GPUs within a server, but as datasets grew, so did the training times, which sometimes took
a week or longer to complete. We found ourselves in need of a way to train using a lot of data while
maintaining short training times. To achieve this, our team turned to distributed training.

We began by testing the standard distributed TensorFlow [4] technique. After trying it out on a few
models, it became apparent that we needed to make two adjustments.

First, after following the documentation and code examples, it was not always clear which
code modifications needed to be made to distribute their model training code. The stan-
dard distributed TensorFlow package introduces many new concepts: workers, parame-
ter servers, tf.Server(), tf.ClusterSpec(), tf.train.SyncReplicasOptimizer(), and
tf.train.replicas_device_setter() to name a few.

While this API may be well-suited to certain scenarios, in many cases it introduced subtle, hard-
to-diagnose bugs. Identifying and fixing these bugs unfortunately required users to climb a steep
learning curve of concepts they almost never care about—they just want to take an existing model
and make it faster, not become an expert along the way in syncronization primtivies.

The second issue dealt with the challenge of computing at Uber’s scale. After running a few
benchmarks, we found that we could not get the standard distributed TensorFlow to scale as well
as our services required. For example, we lost about half of our resources due to communication
overhead when training on 128 GPUs.

Figure 1: Multi-GPU scaling performance using TensorFlow. When comparing images processed per
second while running the standard TensorFlow benchmarking suite on NVIDIA Pascal GPUs (ranging
from 1 to 128) with both the Inception V3 and ResNet-101 TensorFlow models to theoretically ideal
scaling (computed by multiplying the single-GPU rate by the number of GPUs), we were unable to
take full advantage of our hardware resources.

When we ran the standard TensorFlow benchmarking suite [5] on 128 NVIDIA Pascal GPUs,
showcased in Figure 1, we observed that both the Inception V3 and ResNet-101 models were were
unable to leverage nearly half of our GPU resources.

Motivated to make the most of our GPU capacity, we became even more excited about distributed
training after Facebook published a paper [6], demonstrating training of a ResNet-50 network in one
hour on 256 GPUs by combining principles of data parallelism [7] with an innovative learning rate
adjustment technique. This milestone made it abundantly clear that large-scale distributed training
can have an enormous impact on model developer productivity.

2

Standard distributed TensorFlow
Scaling performance

Alexander Sergeev, Mike Del Balso https://arxiv.org/abs/1802.05799

• Poor Scaling (communication overhead)

• Many concepts e.g.
 parameter servers, tf.Server(),
 tf.ClusterSpec(),
 tf.train.SyncReplicasOptimizer(), and
 tf.train.replicas_device_setter()

• Difficult to diagnose bugs

https://arxiv.org/search/cs?searchtype=author&query=Sergeev,+A
https://arxiv.org/search/cs?searchtype=author&query=Del+Balso,+M

Distributed DNN Training with Horovod

• Concept of Horovod
• Implementation of Horovod with TensorFlow
• Example of MNIST dataset training

Distributed DNN Training with Horovod

What is Horovod ?

• Horovod is an open Source library built for distributed training on multiple GPUs and across multiple nodes.

• Horovod is designed to integrate existing DL frameworks: TensorFlow, Keras, PyTorch, Apache MXNet.

• Horovod is built based on communication libraries e.g. MPI (Message Passing Interface), NCCL, Gloo.

Concept of Horovod:
Key points of Horovod:

• Decentralised data parallelism scheme

• Adjusting learning rate technique

• Optimal bandwith ring-allreduce

• Ring-allreduce algorithm Baidu: https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/ (2017)

https://www.sciencedirect.com/science/article/pii/S0743731508001767 (2009)

Facebook: https://arxiv.org/abs/1706.02677 (2017)

https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/
https://www.sciencedirect.com/science/article/pii/S0743731508001767
https://arxiv.org/abs/1706.02677

Figure 2: The “data parallel” approach to distributed training involves splitting up the data and
training on multiple nodes in parallel. In synchronous cases, the gradients for different batches of
data are calculated separately on each node but averaged across nodes to apply consistent updates to
the model copy in each node.

3 Leveraging a different type of algorithm

After this realization, we started looking for a better way to train our distributed TensorFlow models.
Since our models were small enough to fit on a single GPU, or multiple GPUs in a single server, we
tried using Facebook’s data parallel approach to distributed training, shown on Figure 2.

Conceptually, the data-parallel distributed training paradigm is straightforward:

1. Run multiple copies of the training script and each copy:
(a) reads a chunk of the data
(b) runs it through the model
(c) computes model updates (gradients)

2. Average gradients among those multiple copies
3. Update the model
4. Repeat (from Step 1a)

The standard distributed TensorFlow package runs with a parameter server approach to averaging
gradients, shown on Figure 3. In this approach, each process has one of two potential roles: a
worker or a parameter server. Workers process the training data, compute gradients, and send them to
parameter servers to be averaged.

While this approach improved our performance, we encountered two challenges:

• Identifying the right ratio of worker to parameter servers: If one parameter server is
used, it will likely become a networking or computational bottleneck. If multiple parameter
servers are used, the communication pattern becomes “all-to-all” which may saturate network
interconnects.

• Handling increased TensorFlow program complexity: During our testing, every user of
distributed TensorFlow had to explicitly start each worker and parameter server, pass around
service discovery information such as hosts and ports of all the workers and parameter
servers, and modify the training program to construct tf.Server() with an appropriate

3

Worker 0

Worker 1

Worker m

Concept of Horovod: Data parallelism

A. Sergeev, M. Del Balso https://arxiv.org/abs/1802.05799

https://arxiv.org/search/cs?searchtype=author&query=Sergeev,+A
https://arxiv.org/search/cs?searchtype=author&query=Del+Balso,+M

Concept of Horovod: ring-allreduce algorithm

P. Patarasuk & X. Yuan J. Parallel Distrib. Comput. 69, 117–124 (2009)
A. Sergeev, M. Del Balso https://arxiv.org/abs/1802.05799 (2018)

Figure 3: The parameter server model for distributed training jobs can be configured with different
ratios of parameter servers to workers, each with different performance profiles.

tf.ClusterSpec(). Additionally, users had to ensure that all the operations were placed
appropriately using tf.train.device_replica_setter() and code is modified to use
towers to leverage multiple GPUs within the server. This often led to a steep learning curve
and a significant amount of code restructuring, taking time away from the actual modeling.

In early 2017 Baidu published an article [8] evangelizing a different algorithm for averaging gradients
and communicating those gradients to all nodes (Steps 2 and 3 above), called ring-allreduce, as well
as a fork of TensorFlow through which they demonstrated a draft implementation of this algorithm.
The algorithm was based on the approach introduced in the 2009 paper by Patarasuk and Yuan [9].

Figure 4: The ring-allreduce algorithm allows worker nodes to average gradients and disperse them
to all nodes without the need for a parameter server.

In the ring-allreduce algorithm, shown on Figure 4, each of N nodes communicates with two of its
peers 2 ⇤ (N � 1) times. During this communication, a node sends and receives chunks of the data
buffer. In the first N � 1 iterations, received values are added to the values in the node’s buffer. In
the second N � 1 iterations, received values replace the values held in the node’s buffer. Patarasuk
and Yuan in [9] suggest that this algorithm is bandwidth-optimal, meaning that if the buffer is large
enough, it will optimally utilize the available network.

In addition to being network-optimal, the allreduce approach is much easier to understand and
adopt. Users utilize a Message Passing Interface (MPI) [10] implementation such as Open MPI [11]
to launch all copies of the TensorFlow program. MPI then transparently sets up the distributed
infrastructure necessary for workers to communicate with each other. All the user needs to do is
modify their program to average gradients using an allreduce() operation.

4 Introducing Horovod

The realization that a ring-allreduce approach can improve both usability and performance motivated
us to work on our own implementation to address Uber’s TensorFlow needs. We adopted Baidu’s

4

Overlaping between communication (data transfer) and computation (backpropagation)

https://arxiv.org/search/cs?searchtype=author&query=Sergeev,+A
https://arxiv.org/search/cs?searchtype=author&query=Del+Balso,+M
https://arxiv.org/abs/1802.05799

Figure 3: The parameter server model for distributed training jobs can be configured with different
ratios of parameter servers to workers, each with different performance profiles.

tf.ClusterSpec(). Additionally, users had to ensure that all the operations were placed
appropriately using tf.train.device_replica_setter() and code is modified to use
towers to leverage multiple GPUs within the server. This often led to a steep learning curve
and a significant amount of code restructuring, taking time away from the actual modeling.

In early 2017 Baidu published an article [8] evangelizing a different algorithm for averaging gradients
and communicating those gradients to all nodes (Steps 2 and 3 above), called ring-allreduce, as well
as a fork of TensorFlow through which they demonstrated a draft implementation of this algorithm.
The algorithm was based on the approach introduced in the 2009 paper by Patarasuk and Yuan [9].

Figure 4: The ring-allreduce algorithm allows worker nodes to average gradients and disperse them
to all nodes without the need for a parameter server.

In the ring-allreduce algorithm, shown on Figure 4, each of N nodes communicates with two of its
peers 2 ⇤ (N � 1) times. During this communication, a node sends and receives chunks of the data
buffer. In the first N � 1 iterations, received values are added to the values in the node’s buffer. In
the second N � 1 iterations, received values replace the values held in the node’s buffer. Patarasuk
and Yuan in [9] suggest that this algorithm is bandwidth-optimal, meaning that if the buffer is large
enough, it will optimally utilize the available network.

In addition to being network-optimal, the allreduce approach is much easier to understand and
adopt. Users utilize a Message Passing Interface (MPI) [10] implementation such as Open MPI [11]
to launch all copies of the TensorFlow program. MPI then transparently sets up the distributed
infrastructure necessary for workers to communicate with each other. All the user needs to do is
modify their program to average gradients using an allreduce() operation.

4 Introducing Horovod

The realization that a ring-allreduce approach can improve both usability and performance motivated
us to work on our own implementation to address Uber’s TensorFlow needs. We adopted Baidu’s

4

Concept of Horovod: ring-allreduce algorithm

https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/

300-million parameter language model
iterations: 300
batch size: 32

On 40 GPUs: 700 milliseconds per iteration
On a single GPU: 370 milliseconds

https://andrew.gibiansky.com/blog/machine-learning/baidu-allreduce/

Figure 5: Horovod Timeline depicts a high level timeline of events in a distributed training job in
Chrome’s trace event profiling tool.

in performance on models with a large number of layers running on an unoptimized transmission
control protocol (TCP) network. We outline how to use Tensor Fusion, below:

1. Determine which tensors are ready to be reduced. Select the first few tensors that fit in the
buffer and have the same data type.

2. Allocate a fusion buffer if it was not previously allocated. Default fusion buffer size is
64 MB.

3. Copy data of selected tensors into the fusion buffer.
4. Execute the allreduce operation on the fusion buffer.
5. Copy data from the fusion buffer into the output tensors.
6. Repeat until there are no more tensors to reduce in the cycle.

With Horovod, Tensor Fusion, and other features built on top of Michelangelo, we can increase the
efficiency, speed, and ease-of-use across our machine learning systems. In our next section, we share
real world benchmarks that showcase Horovod’s performance.

8 Horovod Benchmarks

Figure 6: A comparison of images processed per second with standard distributed TensorFlow and
Horovod when running a distributed training job over different numbers of NVIDIA Pascal GPUs for
Inception V3 and ResNet-101 TensorFlow models over 25GbE TCP.

7

Horovod benchmarks

A. Sergeev, M. Del Balso https://arxiv.org/abs/1802.05799

https://arxiv.org/search/cs?searchtype=author&query=Sergeev,+A
https://arxiv.org/search/cs?searchtype=author&query=Del+Balso,+M

Implementation

Implemention of Horovod with TensorFlow

https://horovod.readthedocs.io/en/stable/tensorflow.html

gpus = tf.config.experimental.list_physical_devices('GPU’)
for gpu in gpus:
 tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
 tf.config.experimental.set_visible_devices(
 gpus[hvd.local_rank()], 'GPU’)

1- Initialize Horovod
hvd.init()

2- Assign each GPU to a single process (local rank)

3- Scale learning rate
learning_rate = learning_rate * hvd.size()

4-Apply Horovod distributed optimizer to the original optimizer
Opt = hvd.DistributedOptimizer(Opt)
 Or
hvd.DistributedGradientTape if using
tf.GradientTape

Effective batch size = batch size x Nbr of devices
An increase in learning rate compensates the increased batch size.

0- Import Horovod
import horovod.tensorflow as hvd

GPU0 GPU1

cpu-
core 0

cpu-
core 1

local-rank 0 local-rank 1

Node 0

GPU0 GPU1

cpu-
core 0

cpu-
core 1

local-rank 0 local-rank 1

Node 1

5-Broadcast initial variables from rank==0 to all processes

6-Save checkpoints on rank==0

hvd.broadcast_variables

checkpoint.save() when hvd.rank() == 0

This after initializing models and optimizers.

rank 0 rank 1 rank 2 rank 3

Tutorial GitHub repo: $ git clone https://github.com/HichamAgueny/DL-Horovod.git

Tutorial: MNIST dataset training
Distributed with HorovodSingle-GPU training

def train_hvd(learning_rate,batch_size,epochs):
 # Import tensorflow modules
 import tensorflow as tf
 from tensorflow import keras
 import horovod.tensorflow.keras as hvd

 # Initialize Horovod
 hvd.init()

 # Assign each GPU to each local rank
 gpus = tf.config.experimental.list_physical_devices('GPU')
 for gpu in gpus:
 tf.config.experimental.set_memory_growth(gpu, True)
 if gpus:
 tf.config.experimental.set_visible_devices(
 gpus[hvd.local_rank()],'GPU’)

def train(learning_rate,batch_size,epochs):
 # Import tensorflow modules
 import tensorflow as tf
 from tensorflow import keras

Tutorial: MNIST dataset training
Distributed with HorovodSingle-GPU training

def train_hvd(learning_rate,batch_size,epochs):
 …
 …….
 # Prepare dataset with the use of Horovod rank and size
 # the data is partitioned according to the nbr of processes
 (x_train, y_train), (x_test, y_test) = get_dataset(
 hvd.rank(), hvd.size())

 # Initialize DNN model
 model = get_model()

 # Specify the optimizer:
 # Scale the learning rate with the total number of GPUs
 optimizer = keras.optimizers.Adadelta(
 learning_rate=learning_rate * hvd.size())

 # Use the Horovod Distributed Optimizer
 optimizer = hvd.DistributedOptimizer(optimizer)

def train(learning_rate,batch_size,epochs):
 …
 …….
 # Prepare dataset
 # Here the default is rank=0, size=1
 (x_train, y_train), (x_test, y_test) = get_dataset()

 # Initialize DNN model
 model = get_model()

 # Specify the optimizer:
 #
 optimizer = keras.optimizers.Adadelta(
 learning_rate)

Tutorial: MNIST dataset training
Distributed with HorovodSingle-GPU training

def train_hvd(learning_rate,batch_size,epochs):
 …
 …….
 # Compile the model
 model.compile(optimizer=optimizer,
 loss='categorical_crossentropy',
 metrics=['accuracy’])

 # Create a callback to broadcast
 callbacks = [
 #Broadcast the initial variable from rank 0 to all ranks.
 hvd.callbacks.BroadcastGlobalVariablesCallback(0),
 #Average metrics at the end of every epoch.
 hvd.callbacks.MetricAverageCallback(),
 #Scale the learning rate `lr = lr * hvd.size()`.
 #warmup_epochs could be adjusted.
 hvd.callbacks.LearningRateWarmupCallback(
 lr=1e-3*hvd.size(), warmup_epochs=3, verbose=1),
]

def train(learning_rate,batch_size,epochs):
 …
 …….
 # Compile the model
 model.compile(optimizer=optimizer,
 loss='categorical_crossentropy',
 metrics=['accuracy’])

Tutorial: MNIST dataset training
Distributed with HorovodSingle-GPU training

def train_hvd(learning_rate,batch_size,epochs):
 …
 …….
 # Save checkpoints during training only on worker 0
 if hvd.rank() == 0:
 callbacks.append(
 keras.callbacks.ModelCheckpoint(checkpoint_file,
 monitor='val_loss',
 mode='min',
 save_best_only=True))

 # Train the model
 model.fit(x_train,
 y_train,
 batch_size=batch_size,
 callbacks=callbacks,
 epochs=epochs,
 verbose=2,
 validation_data=(x_test, y_test))

def train(learning_rate,batch_size,epochs):
 …
 …….
 #save model checkpoints during training

 callbacks = tf.keras.callbacks.ModelCheckpoint(
 checkpoint_file,
 monitor='val_loss',
 mode='min',
 save_best_only=True)

 # Train the model
 model.fit(x_train,
 y_train,
 batch_size=batch_size,
 callbacks=callbacks,
 epochs=epochs,
 verbose=2,
 validation_data=(x_test, y_test))

Horovod timeline for Profiling

Horovod timeline for Profiling

Horovod timeline for Profiling

Horovod timeline for Profiling

GPU-Binding (Efficient data transfer)

Binding option: CPU-GPU affinity

NUMA node 3

NUMA node 1

NUMA node 0

NUMA node 2

#!/bin/bash
….
#SBATCH --gpus=8
#SBATCH --exclusive
srun --cpu-bind=map_cpu: 49,57, 17,25, 1,9, 33,41 \
./application

Or

MASK="0x${fe}000000000000,0x${fe}00000000000000,
0x${fe}0000,0x${fe}000000,0x${fe},0x${fe}00,
0x${fe}00000000,0x${fe}0000000000"

srun --cpu-bind=mask_cpu:$MYMASKS \
./application

See here for more details
https://github.com/HichamAgueny/DL-Horovod/tree/main/Jobs

Conclusion

• Overview of the compute nodes architecture in LUMI-G.

• Model parallelism vs data parallelism

• Centralized vs decentralized distributed training strategy

• Horovod for distributed training
 - Simple to implement
 - Suitable for large scale distributed training
 - Works with multiple ML frameworks
 - Ring allreduce algorithm

• Horovod timeline profiling

GitHub Repo

